This article was downloaded by: On: *28 January 2011* Access details: *Access Details: Free Access* Publisher *Taylor & Francis* Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Physics and Chemistry of Liquids

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713646857

Ion-Pair Formation in Solutions of Lithium Acetate in Acetonitrile—Water Mixtures at 25°C: A Conductometric Study

Krishnam Raju^a; V. Manaiah^b; B. Sethuram^b; T. Navaneeth Rao^b ^a Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, USA ^b Department of Chemistry, Osmania University, Hyderabad, India

To cite this Article Raju, Krishnam , Manaiah, V. , Sethuram, B. and Rao, T. Navaneeth(1990) 'Ion-Pair Formation in Solutions of Lithium Acetate in Acetonitrile–Water Mixtures at 25°C: A Conductometric Study', Physics and Chemistry of Liquids, 22: 3, 163 – 167

To link to this Article: DOI: 10.1080/00319109008028806 URL: http://dx.doi.org/10.1080/00319109008028806

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Phys. Chem. Liq., 1990, Vol. 22, pp. 163-167 Reprints available directly from the publisher Photocopying permitted by license only

ION-PAIR FORMATION IN SOLUTIONS OF LITHIUM ACETATE IN ACETONITRILE-WATER **MIXTURES AT 25°C: A CONDUCTOMETRIC STUDY**

KRISHNAM RAJU*. V. MANAIAH. B. SETHURAM and T. NAVANEETH RAO

Department of Chemistry, Osmania University, Hyderabad, 500 007, India.

(Received 5 May 1990)

Conductance of lithium acetate in 0-90% acetonitrile-water mixtures at 25°C were measured. The association constants were calculated using the Fuoss-Hsia equation with Fernandez-Prini coefficients. The log K_A vs. 1/D plot was a straight line in accordance with the modified Denison-Ramsey theory of ion-pair formation. Walden products were also calculated. The results are interpreted in terms of solvent separated ion-pairs and contact ion-pairs.

KEY WORDS: Conductance, lithium acetate, acetonitrile-water, association constants, ion-pairs.

INTRODUCTION

Ion-pair formation in solutions of alkali metal halides and halides of small metal ions have been extensively investigated¹ both in aqueous and aquo-organic solvent mixtures. Recently D'Aparno et al.² reported lithium halides association in dioxanewater mixtures using Fuoss 80 conductance equation³. Such studies on acetates of small metal ions are sporadic⁴. The extended Fuoss-Hsia equation⁵ with Fernandez-Prini coefficients⁶, which is based on the hard sphere model can be used for the analysis of conductance data. Fuoss⁷ and Lee and Wheaton⁸ have put forward new conductance equations by considering different models for ion-pair formation. Per Beronius⁹ commented that those equations which were based on solvent separated ion-pairs (SSIP) as well as contact ion-pairs (CIP) yielded same association constant values. Therefore, in the present investigation, the conductances of lithium acetate in 30, 40, 50, 70 and 90% (w/w) acctonitrile (AN)-water mixtures at 25°C were measured and analysed using Fuoss-Hsia equation with Fernandez-Prini coefficients. The results were used to test the applicability of various theories of ion-pair formation such as Bjerrum¹⁰, Fuoss¹¹, Denison-Ramsey¹² and Ebeling-Kraeft-Yokoyama-Yamatera (EKYY)^{13,14}.

^{*} Present Address: Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, USA.

EXPERIMENTAL

Lithium acetate (BDH 99% minimum purity) was used after repeated crystalizations (this had a purity >99.9%). Acetonitrile (BDH) was purified as described by Vogel¹⁵ and had a specific conductance $<1.0 \times 10^{-7}$ S-cm⁻¹. Water with a specific conductance $<1.0 \times 10^{-6}$ S-cm⁻¹ was used. The experimental arrangement was the same as reported earlier¹⁶. The overall accuracy of the measured molar conductances was better than $\pm 0.05\%$.

RESULTS AND DISCUSSION

The observed molar conductances of lithium acetate at 25°C in AN-water mixtures are presented in Table 1. The dielectric constants and viscosity coefficients of the solvent mixtures were taken from literature¹⁷. The conductance data was analysed using Fuoss-Hsia equation⁵ with Fernandez-Prini coefficients⁶.

$$\Lambda = \Lambda_0 - s(\alpha c)^{1/2} + E\alpha c \ln(\alpha c) + J_1 \alpha c - J_2 (\alpha c)^{3/2} - K_A \Lambda y_{\pm}^2 \alpha c \tag{1}$$

where the various symbols have their own significance. All the calculations were carried out as reported earlier¹⁸ and the results are summarised in Table 2 along with the Walden product $(\Lambda_0 \eta)$, association constant (K_A) and standard deviation (σ) .

The functional dependence of log K_A on 1/D was used to test the applicability of various theories of ion-pair formation. Bjerrum and EKYY theories predict curves which are concave downwards. A linear plot passing through origin is expected

30% AN D = 65.85 η = 0.00955 poise		40 % AN D = 61.05 $\eta = 0.00849$ poise		
10 ⁴ C/mol dm ⁻³	$\Lambda/S \ cm^2 \ mol^{-1}$	$10^4 C/mol \ dm^{-3}$	$\Lambda/S \ cm^2 \ mol^{-1}$	
294.71	59.905	298.31	57.883	
252.61	60.661	255.69	58.934	
196.48	61.954	198.87	60.286	
160.75	62.754	162.71	61.408	
136.02	63.512	137.68	62.424	
117.89	64.035	119.32	62.904	
91.014	64.949	105.29	63.488	
80.901	65.347	92.124	63.934	
66.192	65.940	81.888	64.360	
56.009	66.460	73.700	64.849	
48.541	66.804	61.416	65.472	
37.477	67.336	46.062	66.404	
27.256	68.103	37.080	67.384	
19.987	68.615	23.031	68.125	
16.119	68.996	17.273	68.703	

 Table 1
 Concentrations and corresponding molar conductances of lithium acetate in acetonitrile-water mixtures at 25°C.

50% AN D = 55.85 $\eta = 0.00765$ poise		70% AN D = 46.50 $\eta = 0.00560$ poise		
$10^{4}C/mol \ dm^{-3}$	$\Lambda/S \ cm^2 \ mol^{-1}$	$10^4 C/mol \ dm^{-3}$	$\Lambda/S \ cm^2 \ mol^{-1}$	
283.28	57.167	279.32	44.914	
220.23	57.185	244.31	46.484	
180.27	58.710	217.17	47.904	
152.53	59.804	177.68	50.322	
132.20	60.725	150.35	52.351	
116.64	61.374	130.30	54.045	
90.723	62.592	114.97	55.523	
74.228	63.608	89.422	58.203	
62.808	64.321	73.164	60.060	
54.434	64.882	61.908	61.934	
42.026	65.854	53.653	63.297	
30.564	66.951	41.424	65.418	
22.414	67.260	30.126	67.826	
16.010	68.781	22.093	69.786	
		16.245	71.497	
90% AN D = 39.12 n = 0.00387 poise				
$\frac{\eta = 0.00307 \text{ poise}}{10^4 \text{C/mol } \text{dm}^{-3}}$	$\Lambda/S \ cm^2 \ mol^{-1}$			
	26 247			
04.3//	20.24/			
03.782	39.710			
33.822	42.273			
45.542	44.410			
37.409	40.200			
33.290 30.472	47.704			
30.4/3	49.002			
27.087	51.121			
24.378	52.408			
22.102	55.074			
19.000	55.108			
18.193	30.123			

Table 1 (Continued)

Table 2 Association parameters of lithium acetate at 25°C.

Solvent	<i>q/</i> Å	$\Lambda_0/S \ cm^2 \ mol^{-1}$	$K_A/dm^3 mol^{-1}$	σ	$\Lambda_0 \eta$
30% AN	4.255	72.409	1.669	0.083	0.6915
40% AN	4.589	72.973	3.111	0.136	0.6195
50% AN	5.017	73.553	6.190	0.188	0.5627
70% AN	6.025	81.578	41.74	0.252	0.4568
90% AN	7.162	82.288	290.6	0.171	0.3185

according to DR theory whereas Fuoss theory predicts a straight line with a finite intercept. The K_A value for lithium acetate in water¹⁹ at 25°C is 15.01 dm³mol⁻¹. It is observed that there is no association in 10 and 20% acetonitrile-water mixtures. When small amounts of acetonitrile were added to aqueous solutions of lithium acetate, Li⁺ ions get heavily solvated by acetonitrile molecules and prevents the acetate ions from reaching the Li^+ ions and no association can be detected in 10 and 20% acetonitrile in water. At higher percentages of acetonitrile, however, the decrease in dielectric constant dominates the solvation and hence, the association is observed from 30% acetonitrile onwards. Similar behavior was observed in the case of silver acetate in acetonitrile-water mixtures, where association was observed from 40% acetonitrile onwards¹⁶. This was attributed to the more preferential solvation of Ag⁺ ions by acetonitrile than to the Li⁺ ions. Leaving the K_A value for water, the rest of the values exhibit a good linear trend when $\log K_A$ was plotted against 1/D (Figure 1) with a correlation coefficient of 0.996 with 206.51 and -2.843 as slope and intercept respectively. Equating the experimental slope to $|Z_+Z_-|e^2/(2.303 \text{ akT})$, the average ion-size parameter (a) for lithium acetate in these solvents was found to be 1.18 Å. If the intercept value i.e., -2.843 is equated to $3 \log a + \log(4\pi N/3000)$, the

Figure 1 Log K_A versus 100/D for lithium acetate at 25°C.

'a' value was calculated to be 0.83 Å. Thus Fuoss theory predicts different 'a' values of 1.18 and 0.83 Å from the slope and intercept of the same plot for the same ion-pair studied. On the other hand the finite value of the intercept could be accommodated by the modified DR expression as

$$K_A = K_{\hat{A}} \exp(|Z_+ Z_-|e^2/aDkT)$$

The experimental results then fit in to this expression as

$$\log K_A = -2.843 + 206.51/D$$

or

$$K_A = 0.00144 \exp(475.6/D)$$
 and $a = 1.18 \text{ Å}$

This is approximately 37% less than the crystallografic value of 1.87 Å (sum of the ionic radii of Li⁺ and CH₃COO⁻ ions, 0.60 and 1.27 Å respectively¹⁹). Such a low value for other electrolytes are also reported in the literature^{18,20}. Bodenseh and Ramsey²⁰ reported the 'a' value for tetrapropylammonium bromide obtained from the slope of the straight line of the plot of log K_A vs. 1/D was approximately 17% less than the corresponding minimum distance in the crystals. Similarly, for silver acetate in acetonitrile–water mixtures is 12% less than the crystallografic value. These deviations could be due to the fact that each ion-pair is an isolated entity in solution and the ion in that is bound or coordinated with only one ion of opposite charge whereas in the crystaline state it is coordinated with more than one oppositely charged ions. Figure 1 also shows the theoretical log K_A vs. 1/D plots corresponding to Bjerrum, Fuoss, DR and EKYY theories using 'a'=1.87 Å.

References

- L. G. Sillen and A. E. Martell, Stability Constants of Metal-Ion Complexes, Supplement No. 1, Chemical Society, London, Special Publication No. 25, 1971.
- 2. A. D'Aprano, F. Accascina and R. M. Fuoss, J. Soln. Chem., 19, 65 (1990).
- 3. R. M. Fuoss, Proc. Natl. Acad. Sci. U.S.A., 77, 34 (1980).
- 4. F. H. MacDougall and L. E. Topol, J. Phys. Chem., 56, 1090 (1952).
- 5. R. M. Fuoss and K. L. Hsia, Proc. Natl. Acad. Sci. U.S.A., 57, 1550 (1966); 58, 1818 (1967).
- 6. R. Fernandez-Prini, Trans. Faraday Soc., 65, 3311 (1969).
- R. M. Fuoss, J. Phys. Chem., 78, 1383 (1974); 79, 525 (1975); 80, 2091 (1976); 82, 2427 (1978); J. Soln. Chem., 7, 771 (1978).
- W. H. Lee and R. J. Wheaton, J. Chem. Soc. Faraday Trans. II, 74, 743, 1456 (1978); 75, 1128 (1979); Acta Chem. Scand., A34, 307 (1980).
- 9. P. Beronius, Acta Chem. Scand., A34, 309 (1980).
- 10. N. Bjerrum, Kgl. Danske Vidensk, Selsk., 7, 9 (1926).
- 11. R. M. Fuoss, J. Am. Chem. Soc., 80, 5059 (1958).
- 12. J. T. Denison and J. B. Ramsey, J. Am. Chem. Soc., 77, 2615 (1955).
- 13. H. Falkenhagen, W. Ebeling and W. D. Kraeft, *Ionic Interactions*, S. Petrucci, Ed.; Academic Press, New York, Vol. 1, 1971, p. 104.
- 14. H. Yokoyama and H. Yamatera, Bull. Chem. Soc. Jpn., 48, 1770 (1975).
- 15. A. I. Vogel, A Text Book of Practical Organic Chemistry, Longman, London, 1955, p. 407.
- 16. J. Anathaswamy, B. Sethuram and T. Navaneeth Rao, Indian J. Chem., 15A, 9 (1977).
- 17. A. D'Aparno and R. M. Fuoss, J. Phys. Chem, 73, 400 (1969).
- 18. U. G. K. Raju, B. Sethuram and T. Navaneeth Rao, Bull. Chem. Soc. Jpn., 55, 283 (1982).
- 19. J. Anathaswamy, B. Sethuram and T. Navaneeth Rao, Electrochemica Acta, 29, 925 (1981).
- 20. H. K. Bodenseh and J. B. Ramsey, J. Phys. Chem., 69, 543 (1965).